Stephen_V_Faraone_PhD_AIA_2016_fMzGh3

If you’ve been reading my blogs about ADHD, you know that I play by the rules of evidenced based medicine. My view is that the only way to be sure that a treatment ‘works’ is to see what researchers have published in scientific journals. The highest level of evidence is a meta-analysis of randomized controlled clinical trials. For my lay readers, that means that many rigorous studies have been conducted and summarized with a sophisticated mathematical method.

If you are interested in fish oil among ADHD alternative treatments, there is some good news. Many good studies have been published and these have been subjected to meta-analysis. To be more exact, we’re discussing omega-3 polyunsaturated fatty acids (PUFAs), which are found in many fish oils. Omega-3 PUFAs reduce inflammation and oxidative stress, which is why they had been tested as treatments for ADHD. When these studies were meta-analyzed, it became clear that omega-3 PUFAs high in eicosapentaenoic acid (EPA) helped to reduce ADHD symptoms. For details see: Bloch, M. H. and J. Mulqueen (2014). “Nutritional supplements for the treatment of ADHD.” Child Adolesc Psychiatr Clin N Am 23(4): 883-897.

So, if omega-3 PUFAs help reduce ADHD symptoms, why are doctors still prescribing ADHD drugs? The reason is simple. Omega-3 supplements work, but not very well. On a scale of one to 10 where 10 is the best effect, drug therapy scores 9 to 10 but omega-3 therapy scores only 2. Some patients or parents of patients might want to try omega-3 therapy first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that omega-3 therapy is not sufficient. What about combining ADHD drugs with omega-3 supplements? We don’t know. I hope that future research will see if combined therapy might reduce the amount of drug required for each patient.

Keep in mind that the treatment guidelines from professional organizations point to ADHD medications as the first line treatment for ADHD The only exception is for preschool children where medication is only the first line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available.

You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

ADHD and Diet

http://medicalwritingtraining.com/If we are to believe what we read on the Internet, dieting can cure many of the ills faced by humans. Much of what is written is true. Changes in dieting can be good for heart disease, diabetes, high blood pressure and kidney stones to name just a few examples. But what about ADHD? Food elimination diets have been extensively studied for their ability to treat ADHD. They are based on the very reasonable idea that allergies or toxic reactions to foods can have effects on the brain and could lead to ADHD symptoms.

Although the idea is reasonable, it is not such an easy task to figure out what foods might cause allergic reactions that could lead to ADHD symptoms. Some proponents of elimination diets have proposed eliminating a single food, others include multiple foods and some go as far to allow only a few foods to be eaten so as to avoid all potential allergies. Most readers will wonder if such restrictive diets, even if they did work, are feasible. That is certainly a concern for very restrictive diets.

Perhaps the most well-known ADHD diet is the Feingold diet (named after its creator). This diet eliminates artificial food colorings and preservatives that have become so common in the western diet. Some have claimed that the increasing use of colorings and preservatives explains why the prevalence of ADHD is greater in Western countries and has been increasing over time. But those people have it wrong. The prevalence of ADHD is similar around the world and has not been increasing over time. That has been well documented but details must wait for another blog.

The Feingold and other elimination diets have been studied by meta-analysis. This means that someone analyzed several well controlled trials published by other people. Passing the test of meta-analysis is the strongest test of any treatment effect. When this test is applied to the best studies available, there is evidence that exclusion of food colorings helps reduce ADHD symptoms. But more restrictive diets are not effective. So removing artificial food colors seems like a good idea that will help reduce ADHD symptoms. But although such diets ‘work’, they don’t work very well. On a scale of one to 10 where 10 is the best effect, drug therapy scores 9 to 10 but eliminating food colorings scores only 3 or 4. Some patients or parents of patients might want to try this diet change first in the hopes that it will work well for them. That is a possibility, but if that is your choice, you should not delay the more effective drug treatments for too long in the likely event that eliminating food colorings is not sufficient. You can learn more about elimination diets from: Nigg, J. T. and K. Holton (2014). “Restriction and elimination diets in ADHD treatment.” Child Adolesc Psychiatr Clin N Am 23(4): 937-953.

Keep in mind that the treatment guidelines from professional organizations point to ADHD drugs as the first line treatment for ADHD. The only exception is for preschool children where medication is only the first line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available. You can learn more about non-pharmacologic treatments for ADHD from a book I recently edited: Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.
ADHD Foods ADHD diet
Feingold diet

Stephen_Faraone_PhD_AIA_2016_XM7MQd

Are Nonpharmacologic Treatments for ADHD Useful?

There are several very effective ADHD medications, and treatment guidelines from professional organizations view these drugs as the first line of treatment for people with ADHD symptoms.  (The only exception is for preschool children where medication is only the first line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available.)

Despite these guidelines, some parents and patients have been persuaded by the media or the Internet that ADHD drugs are dangerous and that non-drug alternatives are as good or even better. Parents and patients may also be influenced by media reports that doctors overprescribe ADHD drugs or that these drugs have serious side effects. Such reports typically simplify and/or exaggerate results from the scientific literature.  Thus, many patients and parents of ADHD children are seeking “natural remedies for ADHD.” 

What are these non-pharmacologic treatments and do they work?  

My upcoming series of blogs will discuss each of these treatments in detail.  Here I’ll give an overview of my evidenced-based taxonomy of nonpharmacologic treatments for ADHD described in more detail in a book I recently edited (Faraone, S. V. & Antshel, K. M. (2014). “ADHD: Non-Pharmacologic Interventions.” Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.).  I use the term “evidenced-based” in the strict sense applied by the Oxford Center for Evidenced Based Medicine (OCEBM; http://www.cebm.net/). 

Most of the non-drug treatments for ADHD fall into three categories: behavioral, dietary, and neurocognitive.

Behavioral interventions include training parents to optimize methods of reward and punishment for their ADHD child, teaching ADHD children social skills and helping teachers apply principles of behavior management in their classrooms.  Cognitive behavior therapy (CBT) is a method that teaches behavioral and cognitive skills to adolescent and adult ADHD patients.

Dietary interventions include special diets that exclude food colorings or eliminate foods believed to cause ADHD symptoms.  Other dietary interventions provide supplements such as iron, zinc or omega-3 fatty acids.

Neurocognitive interventions typically use a computer based learning setup to teach ADHD patients cognitive skills that will help reduce ADHD symptoms.

There are two metrics to consider when thinking about the evidence-base for these methods.  The first is the quality of the evidence.   For example, a study of 10 patients with no control group would be a low quality study, but a study of 100 patients randomized to either a treatment or control group would be of high quality, and the quality would be even higher if the people rating patient outcomes did not know who was in each group. 

The second metric is the magnitude of the treatment effect.  Does the treatment dramatically reduce ADHD symptoms or does it have only a small effect?  This metric is only available for high quality studies that compare people treated with the method and people treated with a ‘control’ method that is not expected to affect ADHD.

I used a statistical metric to quantify the magnitude of effect. Zero means no effect and larger numbers indicate better effects on treating ADHD symptoms.  For comparison, the effect of is about 0.9, which is derived from a very strong evidence base.     The effects of dietary treatments on symptoms of adult ADHD are smaller, about 0.4 to 0.5, but because the quality of the evidence is not strong, these results are not certain and the studies of food color exclusions apply primarily to children who have high intakes of such colorants.

In contrast to the dietary studies, the evidence base for behavioral treatments is excellent but the effects of these treatments of ADHD symptoms is very small, less than 0.1.    Supplementation with omega-3 fatty acids also has a strong evidence base but the magnitude of effect is also small (0.1 to 0.2).    The neurocognitive treatments have modest effects on ADHD symptoms (0.2 to 0.4) but their evidence base is weak.

This review of non-drug treatments explains why ADHD drug treatments are usually used first.  Their evidence base is stronger and they are more effective in reducing ADHD symptoms.  There is, however, a role for some non-drug treatments. I’ll be discussing that in subsequent blog posts.

If you are health professional, you can learn more about screening, diagnosing and treating ADHD with the latest evidence-based medicine.  Earn FREE CME on Adult ADHD.

If you are a member of the public, you can download a FREE SCREENER and take it to your healthcare professional for a discussion.  If you provider does not know about ADHD, and many don’t, them please send him or her to ADHD in Adults.com

References :

Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

Faraone, S. V. & Antshel, K. M. (2014). Towards an evidence-based taxonomy of nonpharmacologic treatments for ADHD. Child Adolesc Psychiatr Clin N Am 23, 965-72.

http://medicalwritingtraining.com/There are several very effective drugs for ADHD and that treatment guidelines from professional organization view this drugs as the first line of treatment for people with ADHD. The only exception is for preschool children where medication is only the first line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available.

Despite these guidelines, some parents and patients have been persuaded by the media or the Internet that ADHD drugs are dangerous and that non-drug alternatives are as good or even better. Parents and patients may also be influenced by media reports that doctors overprescribe ADHD drugs or that these drugs have serious side effects. Such reports typically simplify and/or exaggerate results from the scientific literature. Thus, many patients and parents of ADHD children are seeking non-drug treatments for ADHD.

What are these non-pharmacologic treatments and do they work? My next series of blogs will discuss each of these treatments in detail. Here I’ll give an overview of my evidenced-based taxonomy of nonpharmacologic treatments for ADHD described in more detail in a book I recently edited (Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.). I use the term “evidenced-based” in the strict sense applied by the Oxford Center for Evidenced Based Medicine (OCEBM; http://www.cebm.net/).

Most of the non-drug treatments for ADHD fall into three categories: behavioral, dietary and neurocognitive. Behavioral interventions include training parents to optimize methods of reward and punishment for their ADHD child, teaching ADHD children social skills and helping teachers apply principles of behavior management in their classrooms. Cognitive behavior therapy is a method that teaches behavioral and cognitive skills to adolescent and adult ADHD patients. Dietary interventions include special diets that exclude food colorings or eliminate foods believed to cause ADHD symptoms. Other dietary interventions provide supplements such as iron, zinc or omega-3 fatty acids. The neurocognitive interventions typically use a computer based learning setup to teach ADHD patients cognitive skills that will help reduce ADHD symptoms.

There are two metrics to consider when thinking about the evidence-base for these methods. The first is the quality of the evidence. For example, a study of 10 patients with no control group would be a low quality study but a study of 100 patients randomized to either a treatment or control group would be of high quality and the quality would be even higher if the people rating patient outcomes did not know who was in each group.

The second metric is the magnitude of the treatment effect. Does the treatment dramatically reduce ADHD symptoms or does it have only a small effect? This metric is only available for high quality studies that compare people treated with the method and people treated with a ‘control’ method that is not expected to affect ADHD.

I used a statistical metric to quantify the magnitude of effect. Zero means no effect and larger numbers indicate better effects on treating ADHD symptoms. For comparison, the effect of stimulant drugs for ADHD is about 0.9, which is derived from a very strong evidence base. The effects of dietary treatments are smaller, about 0.4 to 0.5, but because the quality of the evidence is not strong, these results are not certain and the studies of food color exclusions apply primarily to children who have high intakes of such colorants.

In contrast to the dietary studies, the evidence base for behavioral treatments is excellent but the effects of these treatments of ADHD symptoms is very small, less than 0.1. Supplementation with omega-3 fatty acids also has a strong evidence base but the magnitude of effect is also small (0.1 to 0.2). The neurocognitive treatments have modest effects on ADHD symptoms (0.2 to 0.4) but their evidence base is weak.

This review of non-drug treatments explains why ADHD drug treatments are usually used first. Their evidence base is stronger and they are more effective in reducing ADHD symptoms. There is, however, a role for some non-drug treatments. I’ll be discussing that in subsequent blog posts.

See more evidenced based information about ADHD at www.adhdinadults.com
 

References :
Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.
Faraone, S. V. & Antshel, K. M. (2014). Towards an evidence-based taxonomy of nonpharmacologic treatments for ADHD. Child Adolesc Psychiatr Clin N Am 23, 965-72.

http://medicalwritingtraining.com/In contrast to a large literature demonstrating the effects of medications for adult ADHD, a small but growing literature is beginning to document the value of naturopathic treatments. A good example was recently published by Rucklidge et al. (2014, British Journal of Psychiatry, Epub). These investigators evaluated the efficacy and safety of a micronutrient formula comprised of vitamins and minerals, without omega fatty acids. It is the first double-blind randomized controlled trial to assess the effects of micronutrients (N = 42) compared with placebo (N = 38) on ADHD symptoms. It found that, compared with placebo, the micronutrient formula led to greater improvements in ADHD symptoms for self-ratings and observer-ratings but not for clinician ratings. The effect size of the clinical response ranged from 0.46 to 0.67, which is less than what is typically seen for ADHD medications (Faraone & S. J. Glatt (2010) J Clin Psychiatry 71 754-763). Only 48% of patients in the micronutrient group were rated as improved or very much improved. Although this was greater than the 21% rate in the placebo group, it is about half the response rate seen with stimulant medications. Importantly, the micronutrient and placebo groups did not differ in rates of adverse events. They authors wisely concluded that their results, albeit intriguing, provide only preliminary evidence for the value of micronutrients in treating adult ADHD. This work, and related studies of children and adolescents, will likely motivate more research into micronutrient treatments. Such treatments are especially appealing to patients due to their low side effect burden but given the small evidence based, they should be used with caution if their use will delay the use of treatments whose efficacy has been established. Of note, Rucklidge et al. reported treatment effects after eight weeks. Thus, if patients insist on monotherapy with micronutrients, they should not delay other treatments for longer than eight weeks without evidence that the micronutrients are working.