ASRS in College Students

Gray et al. (2014), The Adult ADHD Self-Report Scale (ASRS): utility in college students with attention- deficit/hyperactivity disorder. PeerJ 2:e324; DOI 10.7717/peerj.324

There has been ongoing interest in the identification of ADHD in college students; many transitional adults will present with ADHD related symptoms and problems with the transition to post-secondary education and the related demands on attention and executive function. This investigation examined the utility of the World Health Organization (WHO) Adult ADHD Self-Report Scale (ASRS) in identifying college students at risk for ADHD. 135 college students (mean age 24 years) who were enrolled in disability service programs at their respective institutions were surveyed; all students had received a prior diagnosis of ADHD and were asked to complete all scales as if they were not on medication (59% of the students were on medication at the time of the evaluation). Students first completed the six item ASRS screener by telephone and then, several weeks later, the completed a paper version of the 18 item ASRS symptom checklist. A collateral version “other-report” of the 18 item ASRS symptom checklist, and a self-report measure of executive function (BDEFS), were also collected.

There was a modest correlation of the other-report and self-report of ASRS symptoms (r(59) = .46, p < .001) and other-report scores were significantly lower than self-report scores (F(1,57) = 8.92, p = .004). There was a moderately high correlation of student self-report of symptoms on the ASRS Screener (telephonic) and the identical six items when completed on the 18 item ASRS Symptom Checklist several weeks later (r (131) = .66, p < .001), indicating some stability of self-report of ADHD symptoms. There were moderate correlations between the total score on the ASRS screener and total executive function (BDEFS summary) scores (r (129) = .40, p < .001); correlations between total scores on 18 item ASRS symptom checklist and summary score on BDEFs were higher than seen with the screener (r (131) = .62, p < .001), indicating that a total symptom inventory of ADHD symptoms better correlates with executive function than the screening subset (which is not surprising). This study has several limitations including: 1) the subjects being asked to complete scales in the hypothetical sense of when they were not on medication (and with 3/5 students being treated for ADHD), creating the possibility of reporter bias, and 2) the study utilized a non-validated version of the other report version of the ASRS symptom checklist which was not sanctioned by WHO.

The study does highlight the utility of the ASRS symptom checklist as a self-report measure in college students; this instrument carries the advantages of being easy to use and being in the public domain. It also indicates that gathering collateral information can be helpful, but as seen in other reports, collateral reports of symptoms are often lower than self and clinician symptom scores as the informant only sees the patient for a portion of their day (home vs. work vs. social).

ADHD and Broken Bones

Adult ADHD is a Risk Factor for Broken Bones

 

Although some people view the impulsivity and inattentiveness of ADHD adults as a normal trait, these symptoms have adverse consequences, which is why doctors consider ADHD to be a disorder. The list of adverse consequences is long and now we can add another: broken bones.   A recent study by Komurcu and colleagues examined 40 patients who were seen by doctors because of broken bones and 40 people who had not broken a bone.  After measuring ADHD symptoms in these patients, the study found that the patients with broken bones were more impulsive and inattentive than those without broken bones.

 

These data suggest that, compared with others, adults with ADHD symptoms put themselves in situations that lead to broken bones.  What could those situations be?  Well, we know for starters that ADHD adults are more likely to have traffic accidents.   They are also more likely to get into fights due to their impulsivity.   As a general observation, it makes sense that people who are inattentive are more likely to have accidents that lead to injuries.  When we don’t pay attention, we can put ourselves in dangerous situations. 

 

Who should care about these results?  ADHD adult patients need to know about this so that they understand the potential consequences of their disorder.  They are exposed to so much media attention to the dangers of drug treatment that it can be easy to forget that non-treatment also has consequences.  Cognitive behavior therapy is CBT_treats_Executive_Dysfunction_Free_ADHD_CME_CJkZtualso useful for helping patients learn how to avoid situations that might lead to accidents and broken bones.

 

This study also has an important message for insurance administrators and how they make decisions about subsidizing or reimbursing treatment for ADHD.  They need to know that treating ADHD can prevent outcomes that are costly to the healthcare system, such as broken bones.   For example, in a study of children and adolescents, Leibson and colleagues showed that healthcare costs for ADHD patients were twice the cost for other youth, partly due to more hospitalizations and more emergency room visits. 

 

Do these data mean that every ADHD patient is doomed to a life of injury and hospital visits?   Certainly not.  But they do mean that patients and their loved ones need to be cautious and need to seek treatments that can limit the possibility of accidents and injury.

 

REFERENCES

 

Komurcu, E., Bilgic, A. & Herguner, S. (2014). Relationship between extremity fractures and attention-deficit/hyperactivity disorder symptomatology in adults. Int J Psychiatry Med 47, 55-63.

 

Leibson, C. L., S. K. Katusic, et al. (2001). “Use and Costs of Medical Care for Children and Adolescents With and Without Attention-Deficit/Hyperactivity Disorder.” Journal of the American Medical Association 285(1): 60-66.

Atomoxetine: Real World Dosing

Kabul,S; Alatorre,C; Montejano,LB; Farr,AM; Clemow, DB.

 

CNS Neuroscience & Therapeutics 21 (2015) 936–942.

 

This study describes a large prescription database survey of dosing patterns of atmoxetine, between January 2006 and December 2001, in adults with ADHD. 12,412 adults >= 18 y.o. met inclusion criteria of: 1) having at least one claim coded for ADHD, 2) having continuous medical and prescription benefits for the 6 months prior and 12 after the index (initial atomoxetine prescription) and 3) having been treated with atomoxetine monotherapy. The survey examined dosing patterns and the average daily dose of atomoxetine prescribed in the 31 to 365 days following the index prescription of atomoxetine (to allow titration). Adults were divided into four dosing cohorts: 1) suboptimal (average daily dose < 80 mg/day) (n=4548, 36.6%) , recommended (80-100 mg/day) (n=3323, 26.8%) , above-recommended (> 100 mg/day) (n=213, 1.7%) and fluctuating (adults who could not be classified readily into one of the above three cohorts as their dose changed commonly during the treatment period). The fluctuating dose cohort (n=4328, 34.9%) was excluded from subsequent analyses of patient characteristics.

 

The suboptimal and recommended cohorts were quite similar in patient characteristics, with the exception of a somewhat higher proportion of younger patients (aged 25-44 years) in the recommended vs. the suboptimal group (45.3% vs. 40.6%); the suboptimal group had somewhat higher percentage of females (53.5% vs. 44%) and lower rates of use of ADHD medication prior to the survey period (16.8% vs. 20.0%) versus the recommended dosing cohort. Rates of co-morbid psychiatric disorders were generally the same in these two groups. The overall dose after titration in the three cohorts was 43 mg/day. Slightly greater than 90% of patients discontinued atomoxetine during the one year observation period.

 

Conclusions drawn from this trial should be tempered by the retrospective, survey based nature of the investigation. Additionally, the assignment of 80 mg/day as the recommended dose is purely based upon the atomoxetine label, whereas the clinical trials examined doses in the 40 to 100 mg/day range. Additionally the four month average treatment period with atomoxetine might have led to an under-estimation of final dosing as a percentage of patients were not titrated to final dosing. However, even with these caveats, there are several important findings for clinicians. Atomoxetine in this claims database seems to be at the lower register of recommended ranges; clinicians should attempt to titrate atomoxetine to optimal dosing based on observed side effects and potential side effects. Adherence to atomoxetine treatment in this claim database was poor, as has been reported in several other studies of ADHD medications in general (stimulants and non-stimulants). Clinicians should make all attempts to improve adherence to medication treatment and attempt to mitigate potential reasons for non-adherence, as patients will only get better if they take their medications.

ADHD and Hyperactivity – Children, Teens, Adults

This article reviews existing evidence for the use of locomotor activity measures in diagnosing ADHD. The authors conducted a meta-analysis of published studies on ADHD using motion measures to compare patients with ADHD with controls and then conducted a case control study using the McLean motion activity test (MMAT) on a sample of child, adolescent and adult ADHD patients (N=81) and matched controls (N=91).

 

Methods

The meta-analysis procedure involved searching several electronic medical databases and selecting only articles which used validated methods for diagnosing ADHD, which compared ADHD subjects to healthy controls and which reported data in ways that enabled the authors to calculate the effect sizes as measured by standardized mean differences (SMD) between study groups. A total of 18 studies were chosen, 13 of which involved actigraphy measures and 5 which used motion tracking systems. The combined sample sizes were 570 ADHD patients (305 children and adolescents and 265 ADHD adults) and 515 controls (equally divided between youth and adults). The SMD (or effect size) between ADHD subjects and controls was 0.64 using actigraphy measures and 0.92 using the motion tracking systems. The SMD or pooled effect size for youth was 0.75 and for adults was 0.73, indicating that excessive motion is seen as often in adult ADHD patients as in children and adolescents. This contradicts the prevailing view that excessive motor activity is less prominent in adults as compared to youth with ADHD.

 

The authors then conducted a case control study comparing ADHD patients and controls. Patients were diagnosed using a comprehensive assessment procedure consisting of structured psychiatric interviews, Conners’ rating scales and the BRIEF (a measure of executive functioning). Subjects were administered the MMAT, an infrared motion tracking system that measures the micro-movements of participants during a Go/No-Go task (15 minutes for youth and 20 minutes for adults). ADHD groups differed significantly from controls on most motion measures, with an effect size of 0.83 for adults and 0.45 for children and adolescents. Reaction time variability was also significantly greater in the ADHD sample across all ages (p<0.05). Interestingly, there were no differences in excessive motion seen among the different ADHD subtypes (combined vs inattentive vs hyperactive vs NOS).

 

Ask the ADHD Experts – Prescribing Medications

 

Conclusions

The authors conclude that locomotor hyperactivity is a core constituent feature of ADHD even in adults and across all diagnostic subtypes. They further suggest that objective locomotion measures may be useful in improving the process of diagnosing difficult cases of ADHD. While it is still premature to suggest that movement measurement devices like the MMAT are necessary for ADHD diagnosis in most patients, there is certainly a role for using them in clinical practice along with established ADHD resources. Future research will help delineate additional uses for these tools in diagnosing other neurodevelopmental disorders.

 

Murillo LG, Cortese S, Anderson D, DiMartino A, Castellanos FX (2015). “Locomotor activity measures in the diagnosis of attention deficit hyperactivity disorder: Meta-analyses and new findings.” Journal of Neuroscience Methods Epub ahead of print March 11, 2015. DOI: 10.1016/j.jneumeth.2015.03.001.

Locomotor Activity and Diagnosing ADHD

This article reviews existing evidence for the use of locomotor activity measures in diagnosing ADHD. The authors conducted a meta-analysis of published studies using motion measures to compare patients with ADHD with controls and then conducted a case control study using the McLean motion activity test (MMAT) on a sample of child, adolescent and adult ADHD patients (N=81) and matched controls (N=91).

 

The meta-analysis procedure involved searching several electronic medical databases and selecting only articles which used validated methods for diagnosing ADHD, which compared ADHD subjects to healthy controls and which reported data in ways that enabled the authors to calculate the effect sizes as measured by standardized mean differences (SMD) between study groups. A total of 18 studies were chosen, 13 of which involved actigraphy measures and 5 which used motion tracking systems. The combined sample sizes were 570 ADHD patients (305 children and adolescents and 265 adults) and 515 controls (equally divided between youth and adults). The SMD (or effect size) between ADHD subjects and controls was 0.64 using actigraphy measures and 0.92 using the motion tracking systems. The SMD or pooled effect size for youth was 0.75 and for adults was 0.73, indicating that excessive motion is seen as often in adult ADHD patients as in children and adolescents. This contradicts the prevailing view that excessive motor activity is less prominent in adults as compared to youth with ADHD.

 

The authors then conducted a case control study comparing ADHD patients and controls. Patients were diagnosed using a comprehensive assessment procedure consisting of structured psychiatric interviews, Conners’ rating scales and the BRIEF (a measure of executive functioning). Subjects were administered the MMAT, an infrared motion tracking system that measures the micro-movements of participants during a Go/No-Go task (15 minutes for youth and 20 minutes for adults). ADHD groups differed significantly from controls on most motion measures, with an effect size of 0.83 for adults and 0.45 for children and adolescents. Reaction time variability was also significantly greater in the ADHD sample across all ages (p<0.05). Interestingly, there were no differences in excessive motion seen among the different ADHD subtypes (combined vs inattentive vs hyperactive vs NOS).

 

The authors conclude that locomotor hyperactivity is a core constituent feature of ADHD even in adults and across all diagnostic subtypes. They further suggest that objective locomotion measures may be useful in improving the process of diagnosing difficult cases of ADHD. While it is still premature to suggest that movement measurement devices like the MMAT are necessary for diagnosing ADHD in most patients, there is certainly a role for using them in clinical practice. Future research will help delineate additional uses for these tools in diagnosing other neurodevelopmental disorders.

 

 

Murillo LG, Cortese S, Anderson D, DiMartino A, Castellanos FX (2015). “Locomotor activity measures in the diagnosis of attention deficit hyperactivity disorder: Meta-analyses and new findings.” Journal of Neuroscience Methods Epub ahead of print March 11, 2015. DOI: 10.1016/j.jneumeth.2015.03.001.

Epilepsy and ADHD Treatments

Ettinger AB1, Ottman R, Lipton RB, Cramer JA, Fanning KM, Reed ML. Attention-deficit/hyperactivity disorder symptoms in adults with self-reported epilepsy: Results from a national epidemiologic survey of epilepsy. Epilepsia. 2015 Jan 15. doi: 10.1111/epi.12897.

The purpose of this study was to examine symptoms of ADHD and resulting functional consequences in a large community cohort of individuals with epilepsy. There is a somewhat higher rate of ADHD observed in pediatric samples of ADHD, but little data exists in terms of the comparative rates of ADHD, co-morbidity and quality of life in adults with epilepsy.

This study is important because it extends the observation of higher rates of ADHD seen in studies of pediatric ADHD to adult ADHD; the observed prevalence rate of ADHD (using a proxy of being screen positive on the ASRS v1.1) was nearly three times in this population of adults with epilepsy as compared to the general population, with substantial functional consequences in these individuals. The study also highlights the need to examine adults with epilepsy for the possibility of co-morbid ADHD.

This study examined through telephone survey as part of The Epilepsy Comorbidities and Health Study (EPIC), 1361 respondents who had been told they had epilepsy and were receiving anti-epileptic drugs (AEDs). The group was divided into a likelihood of having ADHD via the ASRS v1.1 Screener, if they had a total score on these six items > 14 (ASRS v1.1 Screen positive and ASRS v1.1 Screen negative). Measures of co-morbidity included depression: the Physicians Health Questionnaire (PHQ-9), and generalized anxiety disorder: the Generalized Anxiety Disorder Assessment 7 (GAD-7). Quality of life and disability were assessed with the Quality of Life in Epilepsy Inventory 10 (QOLIE-10), Quality of Life and Satisfaction Questionnaire (Q-LES-Q) and the Sheehan Disability Scale (SDS). 251 of the 1361 (18.4%) respondents were found to be at risk for having adult ADHD (ADHD+). ASRS v1.1 Screener positive vs. negative cases were significantly more likely to have seizures and AED use, along with significantly higher depression and anxiety symptom scores. The ASRS v1.1 Screen positive cohort (controlling for covariates) had lower QoL and social functioning (Q-LES-Q) and increased family and occupational disability (SDS). Potential confounds in the data include: 1) that a formal diagnosis of adult ADHD was not obtained (just individuals at risk for the disorder (but prior trials have found that a substantial proportion of screen positive individuals when assessed, actually have adult ADHD) and 2) the possible presentation of ADHD-like symptoms from epilepsy or treatment with AEDs.

ADHD in Young Adults – A Longitudinal Study

P, Kuntsi J. Childhood predictors of adolescent and young adult outcome in ADHD.   J Psychiatr Res. 2015 Jan 29. pii: S0022-3956(15)00022-9. doi: 10.1016/j.jpsychires.2015.01.011.


This investigation examined predictors, including a variety of cognitive measures, demographics and ADHD symptoms and impairments in 116 adolescents followed for an average of 6.6 years into early adulthood.  This study is important as it addresses the critical issue of identifying risk factors for persistence of ADHD into adulthood, which would allow in the future, targeted interventions to potentially improve remission rates.  Remission was defined if individuals no longer met DSM-IV symptom (via DIVA) or impairment (via BFIS) criteria from parental and subject interviews. Symptoms and impairments were established from periods off medication.  62% of the sample was treated with medication.  21% of the sample was found to have remitted.  A number of risk factors were identified as increasing the risk of persistence of ADHD, including higher parental reports of ADHD symptoms, lower IQ and lower socio-economic status (SES).  Medication status did not significantly influence whether a subject was classified as having remitted or persistent ADHD.  These findings of significant associations of low SES and IQ and high ADHD symptoms with persistence of ADHD into young adulthood reinforce similar findings from prior studies and should be included as some of the foci of other longitudinal studies in ADHD.

ADHD and Insomnia

ADHD itself is associated with sleep difficulties, independent of ADHD medications. Thus, it is very important that sleep quality is assessed prior to treatment so that the changes due to treatment can be correctly inferred.


(Editor’s Note: See our Ask the ADHD Experts session on ADHD and Sleep.)


In clinical trials of stimulant ADHD medications, insomnia is typically noted a side effect of the medications. But most of these studies have used subjective patient or parent reports of sleep quality. A new meta analysis, reviews 9 studies of a total of 246 patients enrolled in randomized controlled trials of a stimulant medication.


Ask_the_ADHD_Experts_-_Prescribing_MedicationsTo be included, studies must have had an objective measure of sleep quality, either polysomnography or actigraphy. The analysis showed that stimulant medications led to a) a longer time to get to sleep; b) worse sleep efficiency and c) a shorter duration of sleep. Some of these sleep measures worsened with an increasing number of doses and a shorter time on medication.


Given the adverse effects that lack of sleep can have on cognition and behavior, these data provide further impetus for clinicians, parents and patients to monitor the effects of stimulant ADHD medication on sleep and to take appropriate action (e.g., dose reduction, change of medication) as warranted.


REFERENCES


J Am Acad Child Adolesc Psychiatry. 2009 Sep;48(9):894-908. doi: 10.1097/CHI.0b013e3181ac09c9.

Sleep in children with attention-deficit/hyperactivity disorder: meta-analysis of subjective and objective studies.

Cortese S1, Faraone SV, Konofal E, Lecendreux M.


Pediatrics. 2015 Dec;136(6):1144-53. doi: 10.1542/peds.2015-1708.

Stimulant Medications and Sleep for Youth With ADHD: A Meta-analysis.

Kidwell KM1, Van Dyk TR2, Lundahl A2, Nelson TD2.

Sleep and ADHD Medications

ADHD itself is associated with sleep difficulties, independent of ADHD medications. Thus, it is very important that sleep quality is assessed prior to treatment so that the changes due to treatment can be correctly inferred.

In clinical trials of stimulant medications for ADHD, insomnia is typically noted a side effect of the medications. But most of these studies have used subjective patient or parent reports of sleep quality. A new meta analysis, reviews 9 studies of a total of 246 patients enrolled in randomized controlled trials of a stimulant medication. To be included, studies must have had an objective measure of sleep quality, either polysomnography or actigraphy. The analysis showed that stimulant medications led to a) a longer time to get to sleep; b) worse sleep efficiency and c) a shorter duration of sleep. Some of these sleep measures worsened with an increasing number of doses and a shorter time on medication.
Given the adverse effects that lack of sleep can have on cognition and behavior, these data provide further impetus for clinicians, parents and patients to monitor the effects of stimulant ADHD medication on sleep and to take appropriate action (e.g., dose reduction, change of medication) as warranted.
 

REFERENCES
http://www.ncbi.nlm.nih.gov/pubmed/?term=PMID%3A+26598454
http://www.ncbi.nlm.nih.gov/pubmed/?term=cortese%5Bau%5D+sleep%5Bti%5D+meta%5Bti%5D

Psychotherapy for ADHD

Professor Larry Seidman is world renowned for his neuropsychology and neuroimaging research. In addition to all of his creative science, he has found the time to create what he calls “Neuropsychologically Informed Strategic Psychotherapy (NISP) in Teenagers and Adults with ADHD.” Let’s start with what NISP is not. NISP is not cognitive behavior therapy (CBT). CBT emphasizes teaching patients to identify thinking patterns that lead to problem behaviors. NISP describes how the interpersonal interaction we call psychotherapy can help patients increase self-regulation and self-control. NISP treatments vary in duration from brief psycho-educational interventions of one to five sessions to much longer term therapies of indefinite duration. The duration of therapy is tailored to the needs and goals of the individual. The methods of NISP can be adaptively applied into well-known therapy modalities such as CBT and family therapy. By creating a solid therapeutic alliance, NISP improves adherence to medications and addresses ADHD’s psychiatric comorbidities and functional disabilities. NISP is “neuropsychologically informed” because it follows a comprehensive neuropsychological assessment of strengths and weaknesses. This leaves the therapist with an understanding of the patient’s personal experience of ADHD, the meaning of the disorder, how it affects self-esteem, and how cognitive deficits limit the ability to self-regulate and adapt to changing circumstances. Attending to the patient’s strengths is a key feature of Prof. Seidman’s method. ADHD is a disorder and it usually has serious consequences. But ADHD people also have strong points in their character and their neuropsychological skills. These sometimes get lost in assessments of ADHD but, as Dr. Seidman indicates, by addressing strengths, patient outcomes can be improved. A NISP assessment also seeks to learn about the psychological themes that underlie each patient’s story. He gives the all too common example of the patients who view themselves as failed children who have not tried hard enough to succeed. A frank discussion of neuropsychological test results can be the first step to helping patients reconceptualize their past and move on to an adaptive path of self-understanding and self-regulation.

 

Prof. Seidman’s approach seems sensible and promising. As he recognizes, it has not yet, however, been subject to the rigorous tests of evidenced-based medicine (my blog on EBM: http://tinyurl.com/ne4t7op). So I would not recommend using it as a replacement for an evidenced-based treatment. That said, if you are a psychotherapist who treats ADHD people, read Prof. Seidman’s paper. It will give you useful insights that will help your patients.

 

 

REFERENCES

Seidman, L. J. (2014). Neuropsychologically Informed Strategic Psychotherapy in Teenagers and Adults with ADHD. Child Adolesc Psychiatr Clin N Am 23, 843-852. (In: Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.)