The study team began with a representative sample of 69,972 U.S. adults aged 18 years or older who completed the 2012 and 2013 U.S. National Health and Wellness Survey. These adults were invited to complete the Validate Attitudes and Lifestyle Issues in Depression, ADHD and Troubles with Eating (VALIDATE) study, which included 1) a customized questionnaire designed to collect data on sociodemographic and clinical characteristics and lifestyle, and 2) several validated work productivity, daily functioning, self-esteem, and health-related quality of life (HRQoL) questionnaires. Of the 22,937 respondents, 444 had been previously diagnosed with ADHD, and 1,055 reported ADHD-like symptoms but had no previous clinical diagnosis.

There were no significant differences between the two groups in terms of age, education, income, health insurance, and most comorbid disorders. But those who had not been previously diagnosed were significantly more likely to be first-generation Americans (p<.001), nonwhite (p<.001), unemployed (p=.024), or suffer from depression, insomnia, or hypertension.

After matching the two groups for sociodemographic characteristics and comorbid conditions, covariate comparisons were made between 436 respondents diagnosed with ADHD and 867 previously undiagnosed respondents. Among respondents who were employed, diagnosed individuals registered a mean work productivity loss of 29% as opposed to 49% for the previously undiagnosed (p<.001). They also registered a 37% level of activity impairment versus a 53% level among the undiagnosed (p<.001). On the Sheehan Disability Scale, which ranges from 0 (no impairment) to 30 (highly impaired), the diagnosed group had a mean of 10, as opposed to a mean of 15 for the undiagnosed (p<.001). Diagnosed respondents also significantly outperformed undiagnosed ones on the Rosenberg Self-Esteem Scale (19 versus 15, on a scale of 0 to 30, p<.001), and on two quality-of-life scales (p<.001).

Applying a linear regression mixed model to the matched sets, the diagnosed still scored 16 points better than the undiagnosed on the WPAI:GH Productivity Loss scale (p<.001), 14 points better on the WPAI:GH Activity Impairment scale (p<.001), 4.5 points better on the Sheehan Disability Scale (p<.001), almost 4 points on the Rosenberg Self-Esteem Scale (p<.0001), with comparable gains on the two quality-of-life scales (p<.001 and p<.0001).

The authors concluded, “This comparison revealed that individuals who had been diagnosed with ADHD were more likely to experience better functioning, HRQoL [health related quality-of-life], and self-esteem than those with symptomatic ADHD. This result appears to be robust, withstanding several levels of increasingly rigorous statistical adjustment.” That points to substantial benefits from the treatment that follows diagnosis of adult ADHD.

REFERENCES
Manjiri Pawaskar, Moshe Fridman, Regina Grebla, and Manisha Madhoo, “Comparison of Quality of Life, Productivity, Functioning and Self-Esteem in Adults Diagnosed With ADHD and With Symptomatic ADH,” Journal of Attention Disorders, Published online May 2, 2019 https://doi.org/10.1177/1087054719841129.

Stephen_Faraone_PhD_AIA_2016_XM7MQd

Adult ADHD is a Risk Factor for Broken Bones

Although some people view the impulsivity and inattentiveness of ADHD adults as a normal trait, these symptoms have adverse consequences, which is why doctors consider ADHD to be a disorder. The list of adverse consequences is long and now we can add another: broken bones.   A recent study by Komurcu and colleagues examined 40 patients who were seen by doctors because of broken bones and 40 people who had not broken a bone.  After measuring ADHD symptoms in these patients, the study found that the patients with broken bones were more impulsive and inattentive than those without broken bones.

These data suggest that, compared with others, adults with ADHD symptoms put themselves in situations that lead to broken bones.  What could those situations be?  Well, we know for starters that ADHD adults are more likely to have traffic accidents.   They are also more likely to get into fights due to their impulsivity.   As a general observation, it makes sense that people who are inattentive are more likely to have accidents that lead to injuries.  When we don’t pay attention, we can put ourselves in dangerous situations. 

Who should care about these results?  ADHD adult patients need to know about this so that they understand the potential consequences of their disorder.  They are exposed to so much media attention to the dangers of drug treatment that it can be easy to forget that non-treatment also has consequences.  Cognitive behavior therapy is CBT_treats_Executive_Dysfunction_Free_ADHD_CME_CJkZtualso useful for helping patients learn how to avoid situations that might lead to accidents and broken bones.

This study also has an important message for insurance administrators and how they make decisions about subsidizing or reimbursing treatment for ADHD.  They need to know that treating ADHD can prevent outcomes that are costly to the healthcare system, such as broken bones.   For example, in a study of children and adolescents, Leibson and colleagues showed that healthcare costs for ADHD patients were twice the cost for other youth, partly due to more hospitalizations and more emergency room visits. 

Do these data mean that every ADHD patient is doomed to a life of injury and hospital visits?   Certainly not.  But they do mean that patients and their loved ones need to be cautious and need to seek treatments that can limit the possibility of accidents and injury.

REFERENCES

Komurcu, E., Bilgic, A. & Herguner, S. (2014). Relationship between extremity fractures and attention-deficit/hyperactivity disorder symptomatology in adults. Int J Psychiatry Med 47, 55-63.

Leibson, C. L., S. K. Katusic, et al. (2001). “Use and Costs of Medical Care for Children and Adolescents With and Without Attention-Deficit/Hyperactivity Disorder.” Journal of the American Medical Association 285(1): 60-66.

Anthony L. Rostain, MD MA - ADHD in Adults

This article reviews existing evidence for the use of locomotor activity measures in diagnosing ADHD. The authors conducted a meta-analysis of published studies on ADHD using motion measures to compare patients with ADHD with controls and then conducted a case control study using the McLean motion activity test (MMAT) on a sample of child, adolescent and adult ADHD patients (N=81) and matched controls (N=91).

Methods
The meta-analysis procedure involved searching several electronic medical databases and selecting only articles which used validated methods for diagnosing ADHD, which compared ADHD subjects to healthy controls and which reported data in ways that enabled the authors to calculate the effect sizes as measured by standardized mean differences (SMD) between study groups. A total of 18 studies were chosen, 13 of which involved actigraphy measures and 5 which used motion tracking systems. The combined sample sizes were 570 ADHD patients (305 children and adolescents and 265 ADHD adults) and 515 controls (equally divided between youth and adults). The SMD (or effect size) between ADHD subjects and controls was 0.64 using actigraphy measures and 0.92 using the motion tracking systems. The SMD or pooled effect size for youth was 0.75 and for adults was 0.73, indicating that excessive motion is seen as often in adult ADHD patients as in children and adolescents. This contradicts the prevailing view that excessive motor activity is less prominent in adults as compared to youth with ADHD.

The authors then conducted a case control study comparing ADHD patients and controls. Patients were diagnosed using a comprehensive assessment procedure consisting of structured psychiatric interviews, Conners’ rating scales and the BRIEF (a measure of executive functioning). Subjects were administered the MMAT, an infrared motion tracking system that measures the micro-movements of participants during a Go/No-Go task (15 minutes for youth and 20 minutes for adults). ADHD groups differed significantly from controls on most motion measures, with an effect size of 0.83 for adults and 0.45 for children and adolescents. Reaction time variability was also significantly greater in the ADHD sample across all ages (p<0.05). Interestingly, there were no differences in excessive motion seen among the different ADHD subtypes (combined vs inattentive vs hyperactive vs NOS).

Ask the ADHD Experts - Prescribing Medications

Conclusions
The authors conclude that locomotor hyperactivity is a core constituent feature of ADHD even in adults and across all diagnostic subtypes. They further suggest that objective locomotion measures may be useful in improving the process of diagnosing difficult cases of ADHD. While it is still premature to suggest that movement measurement devices like the MMAT are necessary for ADHD diagnosis in most patients, there is certainly a role for using them in clinical practice along with established ADHD resources. Future research will help delineate additional uses for these tools in diagnosing other neurodevelopmental disorders.

Murillo LG, Cortese S, Anderson D, DiMartino A, Castellanos FX (2015). “Locomotor activity measures in the diagnosis of attention deficit hyperactivity disorder: Meta-analyses and new findings.” Journal of Neuroscience Methods Epub ahead of print March 11, 2015. DOI: 10.1016/j.jneumeth.2015.03.001.