A Canadian team has published a systematic review examining the effectiveness of Mindfulness-Based Interventions (MBIs) for treating adults with ADHD. MBIs usually involve three forms of meditation – body scan, sitting meditation, and mindful yoga – that are intended to cultivate nonjudgmental awareness of present-moment experience. The team reviewed thirteen studies.

Three were single-group studies with no control group. One used dialectical behavior therapy (DBT). It reported mild to moderate improvements in ADHD symptoms, and substantial improvements in neurocognitive function (with standardized mean difference effect sizes from .99 to 2.22). A second enrolled both adults and adolescents in a mindful awareness program (MAP) which included a psychoeducational component. It found improvements in self-reported ADHD symptoms with standardized mean difference (SMD) effect sizes running from .50 to.93. Following training, it also reported improvement in attentional conflict (.93) set-shifting (.43). The third study also used DBT, focused on acceptance, mindfulness, functional behavioral analysis, and psychoeducation. ADHD symptoms showed mild improvement (.22), and functional impairment was slightly reduced (.15) and remained stable at 3-month follow-up.

The other ten studies used control groups. One used MAP and carefully stratified participants based on their ADHD medication status, then randomly assigned them to mindfulness treatment or waitlist. It reported large effect sizes in improvement of self-reported and clinician ratings of ADHD symptoms (1.35 to 3.14), executive functioning (1.45 to 2.67), and self-reported emotion regulation (1.27 to 1.63). Another study nonrandomly assigned adults to either mindfulness-based training (MBT) or skills training. Effect sizes were small to medium (.06 to .49), with 31% of MBT participants showing some improvement, versus only 11% of skills training participants.

Another study involved a controlled trial of college students with ADHD, randomized to receive either MBT or skills treatments. Treatment response rates were higher for MBT (59-65%, vs. 19-25%). At follow-up, the effect size for MBT on ADHD symptoms was large (.84), and similarly large on executive functioning (.81).

Another study tried a year’s worth of mindfulness training on poor responders to medication. Participants who received the treatment were compared to others who were waitlisted. The study reported a medium effect size (.63) in reducing the severity of ADHD.
Another looked at the impact of MAP on affective problems and impaired attention. It compared adults with ADHD and healthy controls who participated in MAP sessions with similar patients and controls who did not. The authors reported that MAP improved sustained attention and mood with medium to large effect sizes (.50 to .80).

A recent study explored the impact of MAP on neurocognitive performance with a randomized controlled trial. Following an 8-week mindfulness training, researchers “found a significant decrease in ADHD symptoms and significant improvement in task performance in both the MAP and the psychoeducation comparison group post- versus preintervention but did not find evidence for a significant main effect of treatment or a significant interaction effect on any ADHD symptoms (self- and observer-rated) nor on task performance (WM).”

Another study randomly assigned adults with ADHD either to a waitlist or to mindfulness-based cognitive therapy (MBCT). It found that MBCT led to a medium-to-large reduction in self-reported ADHD symptoms (.64) and a large reduction in investigator-reported symptoms (.78). It also found large (.93) improvements in executive functioning.

An 11th study looked at the effects of MBCT on neurophysiological correlates (event-related potentials (ERPs)) of performance monitoring in adults with ADHD. Half the patients were randomly assigned to MBCT, the other half to waitlist. MBCT produced reduced inattention, hyperactivity/impulsivity, and global ADHD index symptoms with medium to large effect sizes (.49 to .93).

A 12th study randomly assigned college students to MBCT or waitlist. At follow-up, participants who had received MBCT exhibited large (1.26) reductions in ADHD symptoms as well as greater treatment response rates (57%-71% vs. 23%-31%) versus waitlist. They also registered greater improvement on most neuropsychological performance and attentional scores.

Finally, another study compared the efficacy of MBCT plus treatment as usual (TAU) versus TAU only in reducing core symptoms in adults with ADHD. Participants were randomly assigned to an 8-weekly group therapy including meditation exercises, psychoeducation, and group discussions, or to TAU only, including pharmacotherapy and/or psychoeducation. At 6-month follow-up, MBCT+TAU patients reported large (SMD = .79) improvements in ADHD symptoms relative to TAU patients.

Overall, these are promising results for mindfulness-based interventions, and all the more so for those who do not respond well to drug therapy. Nevertheless, they must be seen as tentative. The sum total of participants over all thirteen studies was just 753, or an average of only 58 per study. There was too much variation in the studies to perform a meta-analysis. Only one of the studies included a healthy (non-ADHD) control group. And only one study received a perfect score by Cochrane Collaboration standards. Most studies did not use a suitable control group, i.e., in which there was an expectation of benefit from participating. As the authors noted, “Attrition bias was found to have high or unclear risk in more than a half of the studies. The reason for dropout of participants was not always clearly specified in those studies, so it is difficult to decide if it might be related to adverse effects or to some discomfort with treatment or instead to some incidental reasons.”

Hélène Poissant, Adrianna Mendrek, Nadine Talbot, Bassam Khoury, and Jennifer Nolan, “Behavioral and Cognitive Impacts of Mindfulness-Based Interventions on Adults with Attention-Deficit Hyperactivity Disorder: A Systematic Review,” Behavioural Neurology, Vol. 2019, Article ID 5682050, 16 pages, https://doi.org/10.1155/2019/5682050.


Adult ADHD is a Risk Factor for Broken Bones

Although some people view the impulsivity and inattentiveness of ADHD adults as a normal trait, these symptoms have adverse consequences, which is why doctors consider ADHD to be a disorder. The list of adverse consequences is long and now we can add another: broken bones.   A recent study by Komurcu and colleagues examined 40 patients who were seen by doctors because of broken bones and 40 people who had not broken a bone.  After measuring ADHD symptoms in these patients, the study found that the patients with broken bones were more impulsive and inattentive than those without broken bones.

These data suggest that, compared with others, adults with ADHD symptoms put themselves in situations that lead to broken bones.  What could those situations be?  Well, we know for starters that ADHD adults are more likely to have traffic accidents.   They are also more likely to get into fights due to their impulsivity.   As a general observation, it makes sense that people who are inattentive are more likely to have accidents that lead to injuries.  When we don’t pay attention, we can put ourselves in dangerous situations. 

Who should care about these results?  ADHD adult patients need to know about this so that they understand the potential consequences of their disorder.  They are exposed to so much media attention to the dangers of drug treatment that it can be easy to forget that non-treatment also has consequences.  Cognitive behavior therapy is CBT_treats_Executive_Dysfunction_Free_ADHD_CME_CJkZtualso useful for helping patients learn how to avoid situations that might lead to accidents and broken bones.

This study also has an important message for insurance administrators and how they make decisions about subsidizing or reimbursing treatment for ADHD.  They need to know that treating ADHD can prevent outcomes that are costly to the healthcare system, such as broken bones.   For example, in a study of children and adolescents, Leibson and colleagues showed that healthcare costs for ADHD patients were twice the cost for other youth, partly due to more hospitalizations and more emergency room visits. 

Do these data mean that every ADHD patient is doomed to a life of injury and hospital visits?   Certainly not.  But they do mean that patients and their loved ones need to be cautious and need to seek treatments that can limit the possibility of accidents and injury.


Komurcu, E., Bilgic, A. & Herguner, S. (2014). Relationship between extremity fractures and attention-deficit/hyperactivity disorder symptomatology in adults. Int J Psychiatry Med 47, 55-63.

Leibson, C. L., S. K. Katusic, et al. (2001). “Use and Costs of Medical Care for Children and Adolescents With and Without Attention-Deficit/Hyperactivity Disorder.” Journal of the American Medical Association 285(1): 60-66.


Are Nonpharmacologic Treatments for ADHD Useful?

There are several very effective ADHD medications, and treatment guidelines from professional organizations view these drugs as the first line of treatment for people with ADHD symptoms.  (The only exception is for preschool children where medication is only the first line treatment for severe ADHD; the guidelines recommend that other preschoolers with ADHD be treated with non-pharmacologic treatments, when available.)

Despite these guidelines, some parents and patients have been persuaded by the media or the Internet that ADHD drugs are dangerous and that non-drug alternatives are as good or even better. Parents and patients may also be influenced by media reports that doctors overprescribe ADHD drugs or that these drugs have serious side effects. Such reports typically simplify and/or exaggerate results from the scientific literature.  Thus, many patients and parents of ADHD children are seeking “natural remedies for ADHD.” 

What are these non-pharmacologic treatments and do they work?  

My upcoming series of blogs will discuss each of these treatments in detail.  Here I’ll give an overview of my evidenced-based taxonomy of nonpharmacologic treatments for ADHD described in more detail in a book I recently edited (Faraone, S. V. & Antshel, K. M. (2014). “ADHD: Non-Pharmacologic Interventions.” Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.).  I use the term “evidenced-based” in the strict sense applied by the Oxford Center for Evidenced Based Medicine (OCEBM; http://www.cebm.net/). 

Most of the non-drug treatments for ADHD fall into three categories: behavioral, dietary, and neurocognitive.

Behavioral interventions include training parents to optimize methods of reward and punishment for their ADHD child, teaching ADHD children social skills and helping teachers apply principles of behavior management in their classrooms.  Cognitive behavior therapy (CBT) is a method that teaches behavioral and cognitive skills to adolescent and adult ADHD patients.

Dietary interventions include special diets that exclude food colorings or eliminate foods believed to cause ADHD symptoms.  Other dietary interventions provide supplements such as iron, zinc or omega-3 fatty acids.

Neurocognitive interventions typically use a computer based learning setup to teach ADHD patients cognitive skills that will help reduce ADHD symptoms.

There are two metrics to consider when thinking about the evidence-base for these methods.  The first is the quality of the evidence.   For example, a study of 10 patients with no control group would be a low quality study, but a study of 100 patients randomized to either a treatment or control group would be of high quality, and the quality would be even higher if the people rating patient outcomes did not know who was in each group. 

The second metric is the magnitude of the treatment effect.  Does the treatment dramatically reduce ADHD symptoms or does it have only a small effect?  This metric is only available for high quality studies that compare people treated with the method and people treated with a ‘control’ method that is not expected to affect ADHD.

I used a statistical metric to quantify the magnitude of effect. Zero means no effect and larger numbers indicate better effects on treating ADHD symptoms.  For comparison, the effect of is about 0.9, which is derived from a very strong evidence base.     The effects of dietary treatments on symptoms of adult ADHD are smaller, about 0.4 to 0.5, but because the quality of the evidence is not strong, these results are not certain and the studies of food color exclusions apply primarily to children who have high intakes of such colorants.

In contrast to the dietary studies, the evidence base for behavioral treatments is excellent but the effects of these treatments of ADHD symptoms is very small, less than 0.1.    Supplementation with omega-3 fatty acids also has a strong evidence base but the magnitude of effect is also small (0.1 to 0.2).    The neurocognitive treatments have modest effects on ADHD symptoms (0.2 to 0.4) but their evidence base is weak.

This review of non-drug treatments explains why ADHD drug treatments are usually used first.  Their evidence base is stronger and they are more effective in reducing ADHD symptoms.  There is, however, a role for some non-drug treatments. I’ll be discussing that in subsequent blog posts.

If you are health professional, you can learn more about screening, diagnosing and treating ADHD with the latest evidence-based medicine.  Earn FREE CME on Adult ADHD.

If you are a member of the public, you can download a FREE SCREENER and take it to your healthcare professional for a discussion.  If you provider does not know about ADHD, and many don’t, them please send him or her to ADHD in Adults.com

References :

Faraone, S. V. & Antshel, K. M. (2014). ADHD: Non-Pharmacologic Interventions. Child Adolesc Psychiatr Clin N Am 23, xiii-xiv.

Faraone, S. V. & Antshel, K. M. (2014). Towards an evidence-based taxonomy of nonpharmacologic treatments for ADHD. Child Adolesc Psychiatr Clin N Am 23, 965-72.